No. of Printed Pages : 4

5-SEMS-Phy-CC-XI(R&B)

2023

Time - 3 hours

Full Marks - 60

Answer **all groups** as per instructions. Figures in the right hand margin indicate marks.

<u>GROUP – A</u>

1.	Fill in the blanks. (all)		[1 × 8
	(a)	The velocity operator is given by	
	(b)	The condition of orthogonalisation is	
	(c)	The potential function of a harmonic oscillator is	
	(d)	The value of the commutator [x ⁿ , p _x] is	
	(e)	The probability of finding the particle in the normal state oscillator within classical limit is	of the
	(f)	Hermitian operators haveeigen values.	
	(g)	The expression for transmittance is	
	(h)	The operator 'x' in the momentum representation is	· · · · · ·

N Sta

<u>GROUP – B</u>

- 2. Answer any eight of the following questions within two to three sentences each. $[1\frac{1}{2} \times 8]$
 - (a) What is Gaussian wave packet ?
 - (b) Define wave function.
 - (c) Explain unit operator is a constant operator.
 - (d) Explain why spin of particle are not considered for Schrodinger's equation ?
 - (e) What are boundary conditions ?
 - (f) Explain Paaschen back effect.
 - (g) Explain Anomalous Zeeman effect.
 - (h) Write the significance of Stern-Gerlach experimental result.
 - (i) What is the nature of energy levels of an linear harmonic oscillator ?
 - (j) Determine the parity of the ground states of atoms of the Nitrogen (N).

<u>GROUP – C</u>

3. Answer any eight of the following questions within 75 words each.

(a) Find the eigen functions of the operator $\frac{d^2}{dx^2}$. [2 × 8]

- [3]
- (b) If a 5000 Å line exhibits normal Zeeman splitting of 1.1 × 10⁻³ Å, find the field strength.
- (c) Calculate the Lande's g-factor for the 2P state.
- (d) Explain space quantisation.

- (e) Explain quantum dot.
- (f) Justify that 'tunneling' is a quantum mechanical phenomenon.
- (g) What are eigen values and eigen functions ?
- (h) Determine whether ψ(x) = e^x is an acceptable wave function or not.
- Heisenberg's uncertainty principle is valid for all kinds of particles. Explain.
- (j) Find whether the operator $\hat{A} = 3x^2$ and $\hat{B} = \frac{d}{dx}$ commute or not.

GROUP - D

Answer all questions within 500 words each.

 Derive an expression for time dependent Schrodinger's equation for a non-relativistic particle.
[6]

OR

Derive an expression for position and momentum uncertainty relation.

P.T.O.

5. Define expectation value of a dynamical variable. Give expression for expectation value of position and momentum. [6

OR

Explain eigenvalues and eigenfunctions of Hermitian operator. Also explain that momentum operator is Hermitian.

6. Derive an expression for quantum mechanical tunneling across a rectangular potential barrier. [6

OR

Derive an expression for boundary conditions using Schrodinger's equation to one dimensional square well potential.

 State and explain Larmor's theorem. Then derive and expression for Larmor's frequency.
[6]

OR

Explain the normal Zeeman effect using classical theory and also obtain an expression for Zeeman shift.