2023

Time-3 hours

Full Marks - 80

Answer all groups as per instructions.
Part of each question should be answered continuously.
Figures in the right hand margin indicate marks.
The symbols used have their usual meaning.

GROUP-A

1. Fill in the blanks and choose the correct answers. (all) [1 $\times 12$
(a) If A and B are independent events, then $P(B / A)=$ \qquad
(b) Probability of a certain event is \qquad .
(c) There are \qquad number of elements in a continuous random variable.
(d) The second moment about the mean is \qquad .
(e) The expectation of a constant is \qquad .
(f) \qquad is the value that appears most frequently in a data
(i) Mean
(ii) Median
(iii) Mode
(iv) Range
(g) Bernoulli distribution is a special case of tion \qquad
(h) In negative binomial distribution \qquad is fixed
(i) Mean of standard normal distribution is \qquad
(j) The range of correlation coefficient (l) varies from to \qquad -. \qquad
(k) If $X_{1}, X_{2}, \ldots \ldots \ldots, X_{n}$ are random variables, then the sample
mean is
(I) The Chi-square distribution is a \qquad test.
(i) parametric
(ii) non-parametric
(iii) neither of the above two

GROUP - B

2. Answer any eight of the following questions.
(a) Prove that $P(\phi)=0$ for any sample space S.
(b) Find the probability that a leap year has 52 Sundays.
(c) Check whether the function given by $f(x)=\frac{x+2}{25}$
for $x=1,2,3,4,5$ can serve as the probability of a discrete random variable.
(d) For a random variable X, prove that

$$
E(a X+b)=a E(X)+b \text { where } a \text { and } b \text { are constants. }
$$

(e) What is conditional expectation?
(f) What is the mean and variance of exponential distribution?
(g) Find the mean of Uniform distribution.
(h) State Central Limit theorem.
(i) What is the probability distribution of sum of ' n ' independent random variables $x_{1}, x_{2}, \ldots \ldots \ldots, x_{n}$ naving Poisson distributions with the respective parameters $\lambda_{1}, \lambda_{2}, \ldots \ldots \ldots, \lambda_{n}$?
(j) Define Chi-square distribution.

GROUP - C

3. Answer any eight questions
(a) If A and B are any two events in a sample space, then prove that $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
(b) Find a formula for the probability distribution of the total number of heads obtained in four tosses of a balanced coin.
(c) A box of fuses contains 20 fuses of which 5 are defective If 3 of the fuses are selected at random and are removed from the box in succession without replacement, what is the probability all 3 fuses are defective?
(d) Prove that for a random variable X

$$
\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)
$$

(e) Define Bivariate Normal distribution,
(f) Define product of moments about origin.
(g) Find the mean of Beta distribution.
(h) What is ' t ' distribution?
(i) If X is the number of points rolled with a balanced die, find $\operatorname{var}(X)$.
(j) If $X_{1}, X_{2}, \ldots \ldots \ldots, X_{n}$ constitute a random sample from an infinite sample with the mean μ and the variance σ^{2}, then prove that $\operatorname{var}(\bar{X})=\frac{\sigma^{\dot{2}}}{n}$.

GROUP - D

Answer all questions.
4. State and prove Baye's theorem.

> OR

Given the joint probability density

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{2}{3}(x+2 y) & \text { for } 0<x<1,0<y<1 \\
0 & , \text { otherwise }
\end{array}\right.
$$

Find the conditional density of X, given $Y=y$ and use it to evaluate $P\left(\left.X \leq \frac{1}{2} \right\rvert\, Y=\frac{1}{2}\right)$.
5. Find the mean and variance of Binomial distribution.

OR
Find the mean and variance of Gamma distribution
6. State and prove Chebyshev's theorem

If X and Y are independent, then prove that $E(X Y)=E(X) \cdot E(Y)$ but not conversely.
7. Given two random variables X and Y that have the joint density

$$
f(x, y)=\left\{\begin{array}{cl}
x e^{-x(1+y)} & \text { for } x>0 \text { and } y>0 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

Find the regression equation of Y on $X=\frac{1}{x}$
OR
If the probability density of X is given by

$$
f(x)=\left\{\begin{array}{cc}
6 x(1-x) & \text { for } 0<x<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

Find the probability density of $Y=X^{3}$.

