No. of Printed Pages : 7

5-SEMAS-Math-DSE-1(R&B)

2023

Time - 3 hours

Full Marks - 80

Answer **all groups** as per instructions. Part of each question should be answered continuously. Figures in the right hand margin indicate marks. The symbols used have their usual meaning.

<u>GROUP – A</u>

1. Fill in the blanks. (all)

[1 × 12

- (a) The general LPP with m constraints and n unknowns (m < n) gives ______ number of basic solutions.
- (b) For maximization of LPP, the objective function coefficient for an artificial variable is _____.
- (c) The rank of a matrix $(a_{ii})_{3 \times 5}$ is less than equal to ______
- (d) The feasible region of an LPP must be _____ set.
- (e) For every _____, there is a dual variable.
- (f) If the dual has an ______ solution, primal has infeasible solution.
- (g) The shadow price of a non-binding constraint is equal to

- (h) An assignment problem is a special case of transportation problem, because all the rim conditions are
- A game is said to be fair if upper value of the game ≈ lower (i)
- Game which involves more than two players are called (i)
- The size of pay-off matrix of a game can be reduced by (k)
- _method determines an initial basic feasible solu-(1)tion which is very close to optimum solution in a transportation problem.

GROUP - B

[2 × 8

- Answer any eight of the following questions. 2.
 - (a) What are the components of an LPP model ?
 - Define Basic solution. (b)
 - (c) Why economic interpretation of duality is necessary?
 - (d) Write any two relationships between a primal and a dual.
 - (e) Define standard primal problem.
 - (f) What is a pay-off matrix ?

[3]

- State when Big-M method is useful. (a)
 - What is the difference between the balanced and unbalanced

State of the state of the

- (h) transportation problem?
- Write any two applications of assignment problem. (i)
- Define mixed strategy. (i)

GROUP - C

[3 × 8

- 3. Answer any eight questions
 - (a) What are the different solutions of an LPP ? Explain.
 - Show that the following system of linear equations has a de-(b) generate solution :
 - $2x_1 + x_2 x_3 = 2$ $3x_1 + 2x_2 + x_3 = 2$
 - (c) What are slack and surplus variables ?
 - (d) Write the matrix form of a primal-dual pair.
 - (e) Give the mathematical formulation of a transportation problem.
 - What are symmetrical and unsymmetrical forms of primal-(f)dual pair?

[4]

(h) Find the Saddle point of the game :

(i) For what value of k, the game with following pay-off matrix is strictly determinable

Β,

Player B

B₁

Player A $\begin{array}{c} A_1 \\ A_2 \end{array} \begin{bmatrix} 2 & 6 \\ -2 & k \end{bmatrix}$

(j) Write the dual of the following LPP :

 $Minimise Z = 15x_1 + 10x_2$

subject to	the	constraints
SUDIECLIO		Conformation

$3x_1 + 5x_2 \ge 5$
$5x_1 + 2x_2 \ge 3$
$x_1^{} \geq 0$, $x_2^{} \geq 0$.

<u>GROUP – D</u>

Answer all questions.

4. Use Simplex method to Maximise Z = $3x_1 + 2x_2 + 5x_3$ subject to $x_1 + 2x_2 + x_3 \le 430$

.

 $3x_1 + 2x_3 \le 460$ $x_1 + 4x_3 \le 420$ $x_1 , x_2 , x_3 \ge 0$ OR

Using Big-M method to solve :

Maximise Z = $3x_1 + 2x_2$ subject to $2x_1 + x_2 \le 2$ $3x_1 + 4x_2 \ge 12$ $x_1, x_2 \ge 0$

P.T.O.

[7

[5]

5. State and prove Fundamental theorem of duality.

OR

Use duality to solve the LPP :

Maximise Z =
$$40x_1 + 50x_2$$

subject to
 $2x_1 + 3x_2 \le 3$
 $8x_1 + 4x_2 \le 5$
 $x_1, x_2 \ge 0$

 Obtain an initial basic feasible solution to the following transportation problem using the North-West corner rule : [7

	D	Е	F	G	Available
A	11	13	17	14	250
В	16	18	14	10	300
с	21	24	13	10	400
Requirement	200	225	275	250	

OR

Solve the following assignment problem :

	I	I	111	N
A	18	26	17	11
В	13	28	14	26
С	36	19	18	15
D	19	26	24	10

[7]

7. For the game with the following pay-off matrix

[7

determine the optimum strategies and value of the game.

OR

Solve the following game graphically :

Player B

Player A
$$\begin{bmatrix} 3 & -3 & 4 \\ -1 & 1 & -3 \end{bmatrix}$$

APV-4413-UG-Sem-V-23-Math(DSE-1)/90

[7

ALC: NOT ALC