2023

Time-3 hours

Full Marks - 80

Answer all groups as per instructions.
Part of each question should be answered continuously.
Figures in the right hand margin indicate marks.
The symbols used have their usual meaning.

GROUP - A

1. Fill in the blanks. (all)
(a) The general LPP with m constraints and n unknowns ($\mathrm{m}<\mathrm{n}$) gives \qquad number of basic solutions.
(b) For maximization of LPP, the objective function coefficient for an artificial variable is \qquad .
(c) The rank of a matrix $\left(\mathrm{a}_{\mathrm{ij}}\right)_{3 \times 5}$ is less than equal to \qquad .
(d) The feasible region of an LPP must be \qquad set.
(e) For every \qquad , there is a dual variable.
(f) If the dual has an \qquad solution, primal has infeasible solution.
(g) The shadow price of a non-binding constraint is equal to
\qquad .
(h) An assignment problem problem, because all the rim conditions are transportation
(i) A game is said to be fair if upper value of the game $=10$ wer
value of the game $=$
(j) Game which involves more than two players are called
(k) The size of pay-off matrix of a game can be reduced by
principle.
(I) \qquad method determines an initial basic feasible solution which is very close to optimum solution in a transporta-
tion problem.

GROUP - B

2. Answer any eight of the following questions.
(a) What are the components of an LPP model ?
(b) Define Basic solution.
(c) Why economic interpretation of duality is necessary?
(d) Write any two relationships between a primal and a dual.
(e) Define standard primal problem.
(f) What is a pay-off matrix?
(g) State when Big-M method is useful.
(h) What is the difference between the balanced and unbalanced transportation problem?
(i) Write any two applications of assignment problem
(j) Define mixed strategy

GROUP - C

3. Answer any eight questions
(a) What are the different solutions of an LPP ? Explain.
(b) Show that the following system of linear equations has a degenerate solution :

$$
\begin{aligned}
& 2 x_{1}+x_{2}-x_{3}=2 \\
& 3 x_{1}+2 x_{2}+x_{3}=2
\end{aligned}
$$

(c) What are slack and surplus variables ?
(d) Write the matrix form of a primal-dual pair.
(e) Give the mathematical formulation of a transportation problem.
(f) What are symmetrical and unsymmetrical forms of primaldual pair?
(g) Write the transportation problem of the assignment problem

	A_{1}	A_{2}	A_{3}
	1	2	3
R_{1}	4	5	1
R_{3}	2	1	4

(h) Find the Saddle point of the game:

Player B
Player A
A_{1}
$A_{2}$$\left[\begin{array}{cc}B_{1} & B_{2} \\ 9 & 2 \\ 8 & 6 \\ 6 & 4\end{array}\right]$
(i) For what value of k , the game with following pay-off matrix is strictly determinable

Player B

$B_{1} \quad B_{2}$
Player $A \quad \begin{array}{cc}A_{1} \\ A_{2}\end{array}\left[\begin{array}{cc}2 & 6 \\ -2 & k\end{array}\right]$
(j) Write the dual of the following LPP :

Minimise $Z=15 x_{1}+10 x_{2}$
subject to the constraints

$$
\begin{aligned}
& 3 x_{1}+5 x_{2} \geq 5 \\
& 5 x_{1}+2 x_{2} \geq 3 \\
& x_{1} \geq 0, x_{2} \geq 0 . \\
& \text { GROUP - D }
\end{aligned}
$$

Answer all questions.
4. Use Simplex method to

$$
\begin{aligned}
\text { Maximise } Z= & 3 x_{1}+2 x_{2}+5 x_{3} \\
\text { subject to } \quad & x_{1}+2 x_{2}+x_{3} \leq 430 \\
& 3 x_{1}+2 x_{3} \leq 460 \\
& x_{1}+4 x_{3} \leq 420 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

OR
Using Big-M method to solve :

$$
\begin{array}{ll}
\text { Maximise } Z= & 3 x_{1}+2 x_{2} \\
\text { subject to } \quad & 2 x_{1}+x_{2} \leq 2 \\
& 3 x_{1}+4 x_{2} \geq 12 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

5. State and prove Fundamental theorem of duality. OR [7

Use duality to solve the LPP :

$$
\begin{aligned}
\text { Maximise } Z= & 40 x_{1}+50 x_{2} \\
\text { subject to } \quad & 2 x_{1}+3 x_{2} \leq 3 \\
& 8 x_{1}+4 x_{2} \leq 5 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

6. Obtain an initial basic feasible solution to the following transportation problem using the North-West corner rule :

17

	D	E	F	G	Available
A	11	13	17	14	250
B	16	18	14	10	300
C	21	24	13	10	400
	200	225	275	250	
	OR				

Solve the following assignment problem :

	I	II	III	N
A	18	26	17	11
B	13	28	14	26
C	36	19	18	15
D	19	26	24	10

