No. of Printed Pages : 5

5-SEMAS-Math-C-12(R&B)

2023

Time - 3 hours

Full Marks - 80

Answer **all groups** as per instructions. Part of each question should be answered continuously. Figures in the right hand margin indicate marks. The symbols used have their usual meaning.

<u>GROUP – A</u>

Answer all questions and fill in the blanks as required. [1 × 12]

- (a) A set containing of a single non-zero vector is ______(LI or LD)
- (b) Every change of coordinate matrix is invertible.(Write true or false.)
- (c) A is invertible if and only if L_A is invertible.
 (Write true or false.)
- (d) The eigen value of A = $\begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$ are _____ and _____
- (e) Every linear transformation is a linear functional.(Write true or false.)
- (f) If $\langle X, Y \rangle = 0$ for all X in an inner product space, then Y =

- (g) Every vector space is isomorphic to its dual space. (Write true or false.)
- (h) Every self adjoint operator is normal. (Write true or false.)
- (i) Find the value of m such that (m, 7, -4) is linear combination of vectors (1, 2, 3) and (1, 1, 1).
- (j) Let V be vector space with dim n. Any linearly independent subset of V that contains _____ number of vectors is a basis for V.
- (k) A matrix A is said to be self adjoint if A = _____.
- (I) The eigen values of an orthogonal matrix are always

GROUP - B

- 2. Answer any eight of the following questions. [2 × 8
 - (a) In a vector space V(F), show that

 $(-a)x = -(ax) = a(-x) \forall a \in F, x \in V.$

- (b) Show that $\{0\}$ is a subspace of the vector space V over F.
- (c) Define span of a set.
- (d) Define anhilator.
- (e) Show that self-adjoint operators are normal.

(f) Find the basis of

- (g) Show that the vector (1, 1, 0), (1, 0, 1), (0, 1, 1) generates R³.
- (h) Find a matrix A, whose minimal polynomial is t³ - 5t² + 6t + 8.
- (i) If $V = R^3$ and $S = \{e_3\}$, then show that $S^{\perp} = XY$ -plane.
- (j) Find the orthogonal projection of the vector u = (2, 6) on the subspace W = {(x, y) : y = 4x} of the inner product space V = R².

GROUP - C

- 3. Answer <u>any eight</u> questions [3 × 8
 - (a) Prove that the span of any subset S of a vector space V is a subspace of V.
- (b) Let V and W be vector spaces over a field F and let T : V →
 W be linear. Prove that for all a ∈ F, aT + U is linear.
 - (c) Let $\beta = \{(2, 1), (3, 1)\}$ be an ordered basis for \mathbb{R}^2 . Let the dual basis β is given by $\beta^* = \{f_1, f_2\}$. Find the formula for f_1 and f_2 .

[4]

- (d) Let $A \in M_{m \times n}(F)$. Then prove that rank(A^*A) = RankA
- (e) Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by $T(x_1, x_2) = (x_1 + 1, x_2 + x_3)$. Is T linear? Justify your answer.
- (f) Show that S^0 is a subspace of V^* .
- (g) Apply Gram-Schimdt process to the subset S = {(1, 0, 1), (0, 1, 1), (1, 3, 3)} of the inner product space V = R³ to obtain an orthogonal basis for span (S).
- (h) Verify Cayley-Hamilton theorem for the matrix

$$A = \begin{bmatrix} 1 & -1 \\ -6 & -2 \end{bmatrix} and find its inverse$$

- (i) State Spectral theorem.
- Let T and U be self-adjoint operators on an inner product space V. Prove that TU is self-adjoint if and only if TU = UT.

GROUP - D

Answer all questions.

4. Let S = {(2, -3, 5), (8, -12, 20), (1, 0, -2), (0, 2, -1), (7, 2, 0)}. Find a basis for \mathbb{R}^3 that is subset of S. [7]

OR

Suppose that $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is linear T(1, 0) = (1, 4), T(1, 1) = (2, 5). What is T(2, 3)? Is T one-one? Let V and W be finite-dimensional vector spaces (over the same field). Then prove that V, is isomorphic to W iff dim(V) = dim(W).

OR

Let $V = R^3$ and define f_1 , f_2 , $f_3 \in V^*$ as follows

 $f_1(x, y, z) = x - 2y, f_2(x, y, z) = x + y + z, f_3(x, y, z) = y - 3z$

Prove that $\{f_1, f_2, f_3\}$ is a basis for and V^{*} and then find a basis for V for which it is the dual space.

6. Let T be a linear operator on R³ defined by [7

$$T(a_1, a_2, a_3) = (4a_1 + a_3, 2a_1 + 3a_2 + 2a_3, a_1 + 4a_3).$$

Test T for diagonalizability.

OR

State and prove Cayley-Hamilton theorem.

7. Let
$$V = P_3(R)$$
 and for f, $g \in V$, $\langle f, g \rangle = \int_{-1}^{1} f(t) g(t) dt$. [7

Find the orthogonal projection of $f(x) = x^3$ on $P_2(R)$.

OR

Find the minimal solution using adjoint matrix for the following system of linear equations :

$$x + 2y + z = 4$$
, $x - y + 2z = -11$, $x + 5y = 19$.

APV-4413-UG-Sem-V-23-Math(C-12)/90

APV-4413-UG-Sem-V-23-Math(C-12)/90