2023

Time-3 hours

Full Marks - 80

Answer all groups as per instructions.
Part of each question should be answered continuously.
Figures in the right hand margin indicate marks.
The symbols used have their usual meaning.

GROUP - A

1. Answer all questions and fill in the blanks as required.
(a) A set containing of a single non-zero vector is \qquad .
(LI or LD)
(b) Every change of coordinate matrix is invertible. (Write true or false.)
(c) A is invertible if and only if L_{A} is invertible. (Write true or false.)
(d) The eigen value of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$ are \qquad and \qquad
(e) Every linear transformation is a linear functional. (Write true or false.)
(f) If $\langle X, Y\rangle=0$ for all X in an inner product space, then $Y=$
\qquad .
(9) Every vector space is isomorphic to its dual space. (Write true or false.)
(h) Every self adjoint operator is normal. (Write true or false.)
(i) Find the value of m such that $(\mathrm{m}, 7,-4)$ is linear combination of vectors $(1,2,3)$ and (1, 1, 1).
(j) Let V be vector space with $\operatorname{dim} n$. Any linearly independent subset of V that contains \qquad number of vectors is a basis for V.
(k) A matrix A is said to be self adjoint if $A=$ \qquad -
(I) The eigen values of an orthogonal matrix are always \qquad

GROUP - B

2. Answer any eight of the following questions. $[2 \times 8$
(a) In a vector space $V(F)$, show that

$$
(-a) x=-(a x)=a(-x) \forall a \in F, x \in V
$$

(b) Show that $\{0\}$ is a subspace of the vector space V over F.
(c) Define span of a set.
(d) Define anhilator.
(e) Show that self-adjoint operators are normal.
(f) Find the basis of

$$
\begin{aligned}
W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in\right. \\
\left.R^{5}: a_{2}=a_{3}=a_{4}, a_{1}+a_{5}=0\right\} \text { of } R^{5} .
\end{aligned}
$$

(g) Show that the vector $(1,1,0),(1,0,1),(0,1,1)$ generates R^{3}
(h) Find a matrix A, whose minimal polynomial is $t^{3}-5 t^{2}+6 t+8$
(i) If $V=R^{3}$ and $S=\left\{e_{3}\right\}$, then show that $S^{\perp}=X Y$-plane.
(j) Find the orthogonal projection of the vector $u=(2,6)$ on the subspace $W=\{(x, y): y=4 x\}$ of the inner product space $V=$ R^{2}.

GROUP - C

3. Answer any eight questions
(a) Prove that the span of any subset S of a vector space V is a subspace of V .
(b) Let V and W be vector spaces over a field F and let $T: V \rightarrow$ W be linear. Prove that for all $a \in F, a T+U$ is linear.
(c) Let $\beta=\{(2,1),(3,1)\}$ be an ordered basis for R^{2}. Let the dual basis β is given by $\beta^{\star}=\left\{f_{1}, f_{2}\right\}$. Find the formula for f_{1} and f_{2}.
(d) Let $A \in M_{m \times n}(F)$. Then prove that $\operatorname{rank}\left(A^{*} A\right)=\operatorname{Rank} A$.
(e) Define $T: R^{3} \rightarrow R^{2}$ by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+1, x_{2}+x_{3}\right)$. is T linear? Justify your answer.
(f) Show that S^{0} is a subspace of V^{\star}
(g) Apply Gram-Schimdt process to the subset $S=\{(1,0,1)$, $(0,1,1),(1,3,3)\}$ of the inner product space $V=R^{3}$ to obtain an orthogonal basis for span (S).
(h) Verify Cayley-Hamilton theorem for the matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \\
-6 & -2
\end{array}\right] \text { and find its inverse. }
$$

(i) State Spectral theorem.
(j) Let T and U be self-adjoint operators on an inner product space V. Prove that TU is self-adjoint if and only if $T U=U T$.

GROUP - D

Answer all questions.

4. Let $S=\{(2,-3,5),(8,-12,20),(1,0,-2),(0,2,-1),(7,2,0)\}$. Find a basis for R^{3} that is subset of S.

OR

Suppose that $T: R^{2} \rightarrow R^{2}$ is linear $T(1,0)=(1,4), T(1,1)=(2,5)$. What is $T(2,3)$? Is T one-one?
5. Let V and W be finite-dimensional vector spaces (over the same field). Then prove that V, is isomorphic to W iff $\operatorname{dim}(V)=$ $\operatorname{dim}(W)$.

OR

Let $V=R^{3}$ and define $f_{1}, f_{2}, f_{3} \in V^{\star}$ as follows

$$
f_{1}(x, y, z)=x-2 y, f_{2}(x, y, z)=x+y+z, f_{3}(x, y, z)=y-3 z
$$

Prove that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a basis for and V^{*} and then find a basis for V for which it is the dual space.
6. Let T be a linear operator on R^{3} defined by

$$
T\left(a_{1}, a_{2}, a_{3}\right)=\left(4 a_{1}+a_{3}, 2 a_{1}+3 a_{2}+2 a_{3}, a_{1}+4 a_{3}\right)
$$

Test T for diagonalizability.

OR

State and prove Cayley-Hamilton theorem.
7. Let $V=P_{3}(R)$ and for $f, g \in V,\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$.

Find the orthogonal projection of $f(x)=x^{3}$ on $P_{2}(R)$.
OR
Find the minimal solution using adjoint matrix for the following system of linear equations :

$$
x+2 y+z=4, x-y+2 z=-11, x+5 y=19
$$

APV-4413-UG-Sem-V-23-Math(C-12)/90

