2023

Time-3 hours

Full Marks - 80

Answer all groups as per instructions.
Part of each question should be answered continuously.
Figures in the right hand margin indicate marks.
The symbols used have their usual meaning.

GROUP-A

1. Answer all questions and fill in the blanks as required. [1 $\times 12$
(a) Find the partial derivatives of $f(x, y)=2 x y+x^{2}$ with respect to x at $(1,2)$ is \qquad .
(b) $\lim _{(x, y) \rightarrow(1,2)} \frac{2 x^{2} y}{x^{2}+y^{2}}=$ \qquad
(c) Given $\lim f(x, y)=5$. If f is continuous, then the $(x, y) \rightarrow(1,1)$
value of $f(1,1)=$ \qquad .
(d) If u is a function of two variables x and y, then the total derivatives of u is defined as \qquad .
(e) The necessary condition for $f(x, y)$ to have extreme points at (a, b) is \qquad .
(f) Grad ϕ defines a \qquad field
(g) Evaluate $\int_{0}^{1} \int_{-1}^{1} \int_{2}^{3} d x d y d z$.
(h) Is the vector $F=2 x y i+x^{2} j$ conservative with scalar potential
$f=x^{2} y$?
(i) Write the cylindrical polar coordinate of (x, y, z).
(j) A field is conservative if \qquad .
(k) Write the vector form of Green's theorem.
(I) For a plane lamina, total mass of the lamina is \qquad

GROUP - B

2. Answer any eight of the following questions.
(a) State Stoke's theorem.
(b) Define curl of the vector field on R^{3}.
(c) Find the mass of the solid at $P(x, y, z)$ and density $P=f(x, y, z)$.
(d) Define directional derivatives of a function.
(e) Find the repeated limits of

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}} \text { at }(x, y)=(0,0) .
$$

(f) Find $f_{x y}$ for the function $f(x, y)=x^{3} y+y^{2}$
(g) Find $\nabla f(x, y)$ for $f(x, y)=x^{2} y+y^{3}$
(h) Find the vector that is normal to the level surface $x^{2}+2 x y-y z+3 z^{2}=7$ at the point $P_{0}(1,1,-1)$.
(i) Evaluate $\int_{0}^{2} \int_{0}^{1}\left(x^{2}+x y+y^{2}\right) d y d x$.
(j) If a is a constant vector, then find $\operatorname{div}(r \times a)$.

GROUP - C

3. Answer any eight questions
(a) Verify the continuity of the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} y}{x^{3}+y^{3}} & ,(x, y) \neq(0,0) \\
0 & ,(x, y)=(0,0)
\end{array}\right. \text { at (0,0). }
$$

(b) Find the directional derivative of the function $f(x, y, z)=x^{2} y-y z^{3}+z$ at the point $(1,-2,0)$ in the direction of the vector $a=2 i+j-2 k$.
(c) Find an equation for the tangent plane and parametric equations for the normal line to the surface $z=x^{2} y$ at the point $(2,1,4)$.
(d) Find the absolute maximum and minimum values of $f(x, y)=3 x y-6 x-3 y+7$ on the closed triangular region R
with vertices $(0,0),(3,0)$ and $(0,5)$
(e) Find all relative extrema and Saddle points of the function

$$
f(x, y)=2 x^{2}+2 x y+y^{2}-2 x-2 y+5
$$

(f) Find the work done when a force

$$
F\left(x^{2}-y^{2}+x\right) i-(2 x y+y) j
$$

moves a particle in the plane from $(0,0)$ to $(1,1)$.
(g) Evaluate the surface integral $\iint_{C} x z d s$ where C is the part of the plane $x+y+z=1$ which lies in the first octant.
(h) Evaluate $\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} x^{2} y^{2} z^{2} d x d y d z$.
(i) Write the fundamental theorem of Line integral.
(j) Calculate the volume of the solid bounded by the planes $x=0, y=0, x+y+z=a$ and $z=0$.

GROUP - D

Answer all questions.
4. Find the equation of the tangent plane to the surface

$$
x^{3}+y^{3}+3 x y z=3 \text { at }(1,2,-1)
$$

OR
If $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{x^{4}+y^{4}} & , x \neq 0, y \neq 0 \\ 0 & , x=0, y=0,\end{array}\right.$
show that f_{x}, f_{y} exist at $(0,0)$ but $f(x, y)$ is discontinuous at $(0,0)$.
5. Show that the function $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}$ has neither maximum nor minimum at $(0,0)$. mum nor minimum at $(0,0)$.

OR

Prove that $\nabla(u \times v)=(\nabla . u) v-(\nabla \cdot v) u$.
6. Evaluate $\int_{-1}^{1} \int_{0}^{2} \int_{x-2}^{x+2}(x+y+z) d x d y d z$.

OR
Find the volume of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

7. Verify Stoke's theorem for $F=x^{2} i+x y j$ taken over the square in the plane $z=0$ whose sides are along the lines $x=0, y=0, x=a$, $\mathrm{y}=\mathrm{a}$.

OR

State and prove Green's theorem.

