2023

Time - 3 hours

Full Marks - 80

Answer **all groups** as per instructions.

Part of each question should be answered continuously.

Figures in the right hand margin indicate marks.

The symbols used have their usual meaning.

GROUP - A

- Answer all questions and fill in the blanks as required. [1 × 12
 - (a) If P(A) has 256 elements, then how many elements are there in A?
 - (b) Write the contrapositive of $x^2 = 1 \Rightarrow x = \pm 1$.
 - (c) Give an example of total ordering relation.
 - (d) What is range of function $f(x) = x^{-1}$ which is defined everywhere on its domain.
 - (e) What is the value of $\phi(35)$?
 - (f) If gcd(a, c) = gcd(b, c) = 1, then gcd(ab, c) = _____
 - (g) A number of the form $2^{2n} + 1$ for non-negative integer n is a

- (h) Find the number of divisors of 7056.
- (i) If an inverse of a matrix A exists, then it is _____
- (i) If λ is an eigen value of the matrix A, then the eigen value of
 Aⁿ is
- (k) A basis of a vector space is maximal L.I. subset of that vector space. (Write true or false.)
- (I) Let T: V → U be a linear map. Then T(0_v) = _____.

GROUP - B

Answer <u>any eight</u> of the following questions.

[2 × 8

(a) Let A, B, C be subsets of some universal set U. Then prove that

$$A \cap B \subseteq C$$
 and $A^C \cap B \subseteq C \rightarrow B \subseteq C$.

- (b) Give an example of a relation on a set is systematric and anti-symmetric.
- (c) Define partial order.
- (d) Show that 2¹⁵ 1 is not a prime number.
- (e) Solve for $x: 2x \equiv 18 \pmod{50}$.
- (f) If gcd(n, n + 1) = 1 for any $n \in N$, then find integers x and y such that nx + (n + 1)y = 1.

- (g) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- (h) Prove that the determinant of an idempotent matrix is either 0 or 1.
- (i) If V has a basis of n elements, then prove that every set of p vectors with p > n is LD.
- (j) If T: U → V be a linear map where U is finite dimensional, then prove that n(T) ≤ dim U.

GROUP - C

Answer <u>any eight</u> questions

 $[3 \times 8]$

- (a) For integers a, b, define a ~ b iff 2a + 3b = 5n for some integer n, show that ~ defines an equivalence relation on Z.
- (b) Show that the compound statement

$$\label{eq:contradiction} \left[p\vee \left((\sim r)\to (\sim s)\right)\right]\vee \left[s\to \left((\sim t)\vee p\right)\right)\vee \left((\sim q)\to r\right)\right]$$
 is neither a tautology nor a contradiction.

- (c) Prove that the set of transcendental number is uncountable.
- (d) Prove that 2⁵ⁿ⁺¹ + 5ⁿ⁺² is divisible by 27 for any positive integer n.
- (e) Find the gcd of 243 and 198 by Euclidean algorithm and express it in the form 198m + 243n.

- (f) If A is non-singular square matrix, then prove that A^T is also non-singular and also prove that $(A^T)^{-1} = (A^{-1})^T$.
- (g) Determine eigen values of the matrix

$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

- (h) Prove that the intersection of two subspaces of V is a subspace of V.
- (i) Check whether the set of vectors {(1, 0, 1), (1, 1, 0), (1, -1, 1), (1, 2, -3)} is LD or LI.
- (j) Let $T: V_3 \rightarrow V_3$ be defined by $T(x_1, x_2, x_3) = (x_1, x_2, 0)$. Prove that T is a linear map.

GROUP - D

Answer all questions.

4. Prove that the union of a family of countable sets is countable.

If $f: A \to B$ is one-to-one and onto, then prove that the inverse mapping of f is unique.

5. State and prove Division algorithm.

OR

By using the Mathematical induction, prove that the truth of $7^{2n} + 2^{3n-3} \cdot 3^{n-1}$ is divisible by 25, for all $n \ge 1$.

 Solve the following system of linear equations by using the rowreduction method:

$$x - y + z = 0$$

$$2x + y - 3z = 1$$

$$-x + y + 2z = -1$$

OR

Find the range, rank, kernel and nullity of the matrix

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 7 & 1 & 2 \\ 3 & -1 & 1 \end{bmatrix}$$

In a vector space V, if {v₁, v₂,, vn} generates V and if {w₁, w₂,, wm} is LI, then prove that m ≤ n.

OR

State and prove the rank nullity theorem for a linear map $T: U \rightarrow V$.

17

[7