1.

2023

Time - 3 hours

Full Marks - 60

Answer all groups as per instructions.

Part of each question should be answered continuously.

Figures in the right hand margin indicate marks.

The symbols used have their usual meaning.

GROUP - A

Answer all questions and fill in the blanks as required.	
(a)	Give an example of a first order non-linear partial differential equation.
	The most general quasi-linear partial differential equation must of the form
(c)	How many independent variables have a partial differential equation?
(d)	If equation is elliptic, then B ² – 4AC is
(e)	The wave equation istype. (hyperbolic, parabolic, elliptic)
	(Choose the correct answer.)

131

Cauchy problem deals with _____ order partial differential equation.

(g) If $u(x, t) = U\left(t - \frac{x}{c}\right) H\left(t - \frac{x}{c}\right)$,

then H is known as _____ step function.

(h) The system $(a_1 - m)A + b_1B = 0$

$$a_2A + (b_2 - m)B = 0$$

has the trivial solution if _____. (Choose the correct answer.)

- (i) A = B = 0 (ii) $A \neq 0$ and B = 0
- (iii) A = 0 and $B \neq 0$

GROUP - B

Answer any eight of the following questions.

[11/2 x 8

- (a) Define a quasi-linear partial differential equation.
- (b) If $u(x, y) = f(x) \cdot g(y)$, then what happened to the equation $u_{xx} + u_{yy} = 0$
- (c) Eliminate the arbitrary constant from $z = ax + by + a^2 + b^2$
- (d) Classify the equation $u_{xx} y^4 u_{yy} = 2y^3 u_y$.
- (e) Write the Laplace equation in polar coordinates.

- What is D' Alembert's solution of the Cauchy problem.
- Write the Cauchy problem for the non-homogeneous wave equation.
- Write the normal form in case of linear system of three differential equations.
- If m, and m, are the two complex conjugate roots, then what can be the solution?
- State the existence and uniqueness of the solution of the system in normal form.

GROUP - C

Answer any eight questions

[2 × 8

- (a) Solve: $u_{yy} = 4xe^{2y}$.
- Eliminate the function f from the relation $z = e^{mx} f(x + y)$.
- (c) Solve : au + bu = 0.
- (d) Solve the Cauchy problem :

$$uu_x + u_y = u$$
, $u(x, 0) = 2x$, $1 \le x \le 2$.

- (e) Solve: $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ with $u(0, y) = 8e^{-3y}$.
- (f) Show that $u(x, t) = \frac{c}{\sqrt{t}} e^{\left(\frac{-x^2}{4kt}\right)}$ is a solution of $u_t ku_{xx} = 0$.

(g) Determine the solution of initial value problem

$$u_{tt} - c^2 u_{xx} = 0$$
, $u(x, 0) = 0$, $u_t(x, 0) = 3$.

- (h) Find the longitudinal oscillation of a rod subject to the initial conditions u(x, 0) = sin x, u_t(x, 0) = x.
- (i) Show that the two solutions $x = 3e^{7t}$, $y = 2e^{7t}$ and $x = e^{-t}$, $y = -2e^{-t}$ are linearly independent on every interval [a, b] and find the general solution.
- Show that the ordered pair of functions defined for all t by (3e^{7t}, 2e^{7t}) is a solution of the system

$$\frac{dx}{dt} = 5x + 3y$$

$$\frac{dy}{dt} = 4x + y.$$

GROUP - D

Answer all questions.

4. Reduce the equation $u_x - yu_y - u = 1$ into canonical form and find the general solution. [6]

OR

Find the general solution of the equation

$$(y + u)u_x + (x + u)u_y = x + y.$$

5. Find the solution of the wave equation $u_{tt} - c^2 u_{xx} = 0$. [6]

OR

Classify the equation $u_{xx} + 10u_{xy} + 9u_{yy} = y$, then find its general solution.

 Determine the solution of the following initial boundary value problem:

$$u_{tt} = c^2 u_{xx}$$
, $0 < x < \pi$, $t > 0$, $u(x, 0) = 0$

$$u_t(x, 0) = 8\sin^2 x$$
, $0 \le x \le \pi$, $u(0, t) = 0 = u(\pi, t)$, $t > 0$.

OR

Find the solution of the vibrating string problem:

$$u_{tt} = c^2 u_{xt}$$
, $0 < x < 1$, $t > 0$, $u(x, 0) = x(1 - x)$

$$u_{*}(x, 0) = 0, 0 \le x \le 1, u(0, t) = u(1, t) = 0, t > 0$$

[6

7. Find the general solution of the linear system:

$$2\frac{dx}{dt} + \frac{dy}{dt} - x - y = e^{-t}$$

$$\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = e^t$$

OR

Consider the initial value problem $\frac{dy}{dx} = 1 + y^2$. Apply method of successive approximations, starting with zeroth approximation $\phi_0(x) = 0$, compute $\phi_4(x)$.