2023

Time - 3 hours

Full Marks - 80

Answer all groups as per instructions.

Part of each question should be answered continuously.

Figures in the right hand margin indicate marks.

The symbols used have their usual meaning.

GROUP - A

Ans	wer <u>all</u> questions and fill in the blanks as required. [1 \times 12
(a)	The symmetry group of the equilateral triangle is represented by
(b)	The order of U(12) is
(c)	Every group is a subgroup of itself. (Write true or false.)
(d)	An infinite cyclic group has generators.
(e)	The product of two odd permutations is a permutation.
(f)	What are the generators of Z ₆ ?
(g)	If G be a finite group and a ∈ G, then a G =

- (h) Every subgroup of an abelian group is _____
- (i) Factor group of a cyclic group is _____.
- (j) Every homomorphism is a one-to-one mapping (Write true or false.)
- (k) If H is abelian, then $\phi(H)$ is _____.
- (I) If φ is onto, then G/ker φ ______ G.

GROUP - B

2. Answer any eight of the following questions.

[2 × 8

- (a) Prove that if $a^2 = a$, $a \in G$, then a = e.
- (b) Show that U(14) is a cyclic.
- (c) Define centralizer.
- (d) What are the order of permutation

- (e) What are the properties that G must be satisfied in order to be a group?
- (f) State the Fundamental theorem of cyclic group.
- (g) G be a group with subgroup H and K. If |G| = 660, |K| = 66 and K ⊂ H ⊂ G. What are the possible values of |H|?

- (h) Define a factor group.
- Show that the mapping φ from R* to R defined by φ(x) = | x | is a homomorphism with ker φ = (1, -1).
- (j) If | a | ≈ n, then prove that | φ(a) | divides n.

GROUP - C

Answer any eight questions

[3 × 8

(a) Find the inverse of the element

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix} \text{ in GL}(2, Z_s).$$

- (b) In a group G, prove that $(ab)^{-1} = b^{-1}a^{-1}$.
- (c) If H is a subgroup of G, then show that
 C(H) = {x ∈ G : xh = hx for all h ∈ H} is a subgroup of G.
- (d) Prove that every permutation can either be even or odd but not both.
- (e) Prove that S_n is non-abelian for all $n \ge 3$.
- (f) Find the order of (3, 10, 9) in Z₄ ⊕ Z₁₂ ⊕ Z₁₅.
- (g) For every positive integer a and every prime p, prove that a^p ≡ a(mod p).

- (h) Show that A3 is normal in S3.
- (i) Show that 3Z/12Z ≈ Z,
- Consider Z₃₅ where the group operation is addition, then show that

 $Z_{35} \approx Z_7 \oplus Z_5 \approx \langle 5 \rangle \oplus \langle 7 \rangle$.

GROUP - D

Answer all questions.

 Show that the set {1, 2, 3} under multiplication modulo 4 is not a group but the set {1, 2, 3, 4} under multiplication modulo 5 is a group.

OR

- G be a group, H is a subgroup of a group G. Then prove that $a \equiv b \mod H$ is an equivalence relation.
- 5. Let H and K be finite subgroups of a group G. Then prove that

$$o(HK) = \frac{o(H) o(K)}{o(H \cap K)}.$$
 [7

OR

Prove that every permutation of a finite set can be written as a product of disjoint cycles.

 Prove that a subgroup H of a group G is a normal subgroup of G if and only if the product of two right cosets of H in G is again a right coset of H in G.

OR

Prove that U(n) is expressed as an external direct product.

7. State and prove Cauchy's theorem for a finite abelian group. [7

OR

State and prove First Isomorphism theorem.