2023

Time - 3 hours

Full Marks - 80

Answer all groups as per instructions.

Part of each question should be answered continuously.

Figures in the right hand margin indicate marks.

The symbols used have their usual meaning.

GROUP - A

1,	Allswell all questions and fill in the blanks as required.	
	(a)	Identify the type of Indeterminate form in $\left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$ at $x = 0$.
	(b)	$F(x) = x^2e^{x+1}$ has a local minimum at which point?
	(c)	Taylor's theorem can be regarded as an of the Lagrange's Mean Value theorem.
	(d)	The necessary condition for the Maclaurin's expansion to be true for the function f(x) should be
	(e)	If f is bounded and integrable on [a, b], then there exists a

number λ lying between the bounds of f such that $\int f dx =$

- (f) Every continuous function on [a, b] is integrable.(Write true or false.)
- (g) Give an example of a function which is Riemann integrable but not monotonic.
- (h) If $f(x) \le g(x)$ for all $x \in (a, b)$ and $\int_a^b f(x) dx$ is divergent, then $\int_a^b g(x)dx$ is ______.
- Continuity of the limit function does not ensure the _____
 of sequence of functions.
- (j) If $M_n = \sup\{(a_k), k \ge n\}$, then $\lim_{n \to \infty} \sup a_n = \underline{\hspace{1cm}}$.
- (k) A power series converges for $|x| < \rho$ and diverges for $|x| > \rho$, then f is known as ______.
- (I) If $\lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right| = 0$, then the series is convergent for all x and $\rho =$ ______.

GROUP - B

2. Answer any eight of the following questions.

[2 × 8

(a) By using Taylor's theorem, find a polynomial f(x) of degree 2 which satisfies

$$f(1) = 2$$
, $f'(1) = -1$ and $f''(1) = 2$.

- (b) Yse L'Hospital rule to show that $\lim_{x \to 0} \frac{x \log(1 + x)}{1 \cos x} = 1$.
- (c) State the condition for extrema.
- (d) Give an example of f and g which are not integrable such that f + g is integrable.
- (e) Let $f: [0, 1] \to R$ be defined by f(0) = 0, $f(x) = [x^{-1}]^{-1}$, $x \ne 0$. Show that $f(x) \in R[0, 1]$.
- (f) Define improper integral.
- (g) If $f_n(x) = \frac{\sin x}{\sqrt{n}}$, then find f(x).
- (h) Write the p-test for convergence.
- (i) State the Weirstrass' M-test for series.
- (j) Show that $\int_0^1 \sum_{k=0}^{\infty} \frac{x^k}{k!} dx = e 1.$

GROUP - C

3. Answer any eight questions

[3 × 8

(a) If f'' is continuous on $[a - \delta, a + \delta]$ for some $\delta > 0$, then show that

$$\lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2} = f''(a).$$

(b) Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\tan 3x}{\tan x}$.

(c) Find the maximum and minimum of

$$f(x) = \sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x, x \in [0, \pi].$$

- (d) Show that $\left| \int_{p}^{q} \frac{\sin x}{x} dx \right| \le \frac{2}{p}$, q > p > 0.
- (e) If f∈ B[a, b] and if f is Darboux integrable on [a, b], the5prove that for all ε > 0, ∃ a partition P of [a, b] such that

$$U(f, P) - L(f, P) < \epsilon.$$

(f) Show that

$$\lim_{n\to\infty}\sum_{k=1}^n \frac{k}{k^2+n^2} = \log \sqrt{2}.$$

- (g) Prove that B(m, n) = B(m, n + 1) + B(m + 1, n).
- (h) Show that (xn) is not uniformly convergent on [0, 1].
- (i) Show that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
- (i) Find the radius of convergence of the series

$$1 + \frac{x}{2} + \left(\frac{x}{4}\right)^2 + \left(\frac{x}{2}\right)^3 + \left(\frac{x}{4}\right)^4 + \dots$$

GROUP - D

Answer all questions.

 State and prove Cauchy's mean value theorem with geometrical interpretation.

OR

Expand log(1 + x) by Maclaurin's series.

Prove that every continuous function is integrable. [7

OR

Test the integrability of f(x) =
$$\begin{cases} 2x & , x \in \left[0, \frac{1}{4}\right] \\ 1-x & , x \in \left[\frac{1}{4}, \frac{1}{2}\right] & \text{on } [0, 1]. \\ 1+x & , x \in \left[\frac{1}{2}, 1\right] \end{cases}$$

5. Prove that the improper integral $\beta(p, q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt$ converges for p > 0, q > 0.

OR

If $f_n(x) = |x|^{1+\frac{1}{n}}$, $x \in [-1, 1]$, then show that $f_n \in D[-1, 1]$, $f_n(x) \rightarrow f(x) = |x|$ uniformly on [-1, 1] and f is not differentiable.

[7

State and prove generalised Abel's theorem.

OR

Prove that a power series can be differentiated term by term strictly within its interval of convergence.