2023

Time-3 hours

Full Marks - 80

Answer ALL questions.
Figures in the right hand margin indicate marks.

1. What is Operations Research (OR) ? What are the essential characteristics of OR ? What are the advantages and disadvantages of OR Model ?

OR

Explain the term 'Decision' in a decision making problem. Indicate the differences between decision under risk and decision under uncertainty in decision theory.
2. Use graphical method to solve the following LPP :

Maximise $Z=2 x_{1}+3 x_{2}$
subject to the constraints

$$
\begin{aligned}
& x_{1}+x_{2} \leq 30 \\
& x_{1}-x_{2} \geq 0 \\
& x_{2} \geq 3,0 \leq x_{1} \leq 20
\end{aligned}
$$

and

$$
0 \leq x_{1} \leq 20 \text { and } 0 \leq x_{2} \leq 12
$$

OR

Solve the following problem by Vogel's Approximation Method (VAM)

Demand \downarrow	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	3	7	6	4	5
$\mathrm{~S}_{2}$	2	4	3	2	2
$\mathrm{~S}_{3}$	4	3	8	5	3
	3	3	2	2	10

3. (a) Solve the following Two Person Zero Sum (TPZS) game :

$$
\begin{array}{cc}
& \\
& \\
& \\
& a_{1} \\
b_{1} & b_{2}
\end{array} b_{3} \begin{array}{rrr}
15 & 2 & 3 \\
\text { Plaery-A } & a_{2} & \left.\begin{array}{rrr}
6 & 5 \\
-7 & 4 & 0
\end{array}\right)
\end{array}
$$

(b) What is a strictly determinable game ? Explain with a suitable example.

OR

What is Goal Programming ? How do you differentiate Goal Programming from Linear programming. Explain with suitable example.
4. Describe briefly the EOQ concept. What are its limitations? Discuss.

OR

What is queuing theory? In what types of problem situations it can be applied successfully ? Discuss giving examples. [16
5. What is simulation ? Discuss the applications of simulations with special reference to Monte-Carlo simulation.

OR

A project consists of a series of tasks labelled A, B, \ldots, H, I with the following Relationships ($W<X, Y$: means X and Y cannot start until w is completed ; $\mathrm{X}, \mathrm{Y}<\mathrm{W}$: means w cannot start until both X and Y are completed). With this notation, construct the network diagram having the following constraints :

$$
A<D, E ; B, D<F ; C<G ; B, G<H \text { and } F, G<I .
$$

Find also the minimum time of completion of the project, when the time (in days) of completion of each task is as follows :

Task	A	B	C	D	E	F	G	H	I
Time	23	8	20	16	24	18	19	4	10

